
Class Diagrams
Basics

Miroslav Biňas
(c) 2010 - 2017

Introduction

●one of the common UML diagrams
●class diagram - describes types of the

objects in the system and relationships
between them

●contains
○ features - properties (attributes) and

methods
○ restrictions in usage

Class Diagram Structure

Class Name

attributes

methods

Class Diagram Example

Person

-name: string
-surname: string

+getName(): string
+getSurname(): string
+setName(string: name): void
+setSurname(surname: string): void

Sketch of
Conceptual Class Diagram

Initial
Conceptual Class Diagram

Properties

●structural features of class
○class entries

● two notations:
○attributes
○associations

●in diagram each notation looks
different, but meaning is the same

Attributes

●notation using attributes describes
properties with line of text inside of the
class box

●attribute syntax:
visibility name: type
multiplicity = default-value
{flags}

●Example:
- name: String [1] = "no
name" {readOnly}

Attribute Notation Explained

●visibility - public (+), private (-),
protected (#)

●name - mandatory
●type - type of attribute value/object
●multiplicity
●default-value - value for newly

created object
●flags - other features of attribute

Associations

●solid oriented line (with arrow) between
two classes oriented from source class
to destination class

●destination class specifies type of
property

●at the destination class is written:
○property name
○multiplicity

Associations Example

Tips for Usage of Properties

●Q: when to use attributes and when
associations?

●attributes - mainly for value types or
built in reference types

●associations - mainly for special
classes (Customer and Order)

●what to use and what to hide
(attributes) is based on what would you
like to highlight

Multiplicity

●multiplicity of property defines, how
many objects can be stored in property

●common values:
○1 - exactly one instance, default
○0..1 - no instance or one instance
○* - zero or more instance

●multiplicity defines range of instances -
lower_limit..upper_limit

Forms of Multiplicity

●optional - lower limit starts at 0
●mandatory - lower limit start min. at 1
●single-valued - upper limit is 1
●multivalued - upper limit is greater

than 1 (usually *)

Multiplicity Flags

●{ordered} - set of entries in order
●{nonunique} - not unique
●{unordered} - default, not ordered
●{unique} - default, unique

Properties Implementation

public class Order {
 private Date dateReceived;
 private boolean isPrepayed;
 private List<OrderLine>
 orderEntries;
}

Bidirectional Associations

●possible to use without arrows
○useful in conceptual models

●bidirectional association is pair of properties
inversely connected
○Car has property
owner:Person [0..1]

○Person has property
cars:Car [*]

CarPerson
-owner

0..1
-cars

*

Named Associations

●possible to use instead of properties
● relation is marked with verb

○arrow shows orientation
○ it can be used in sentence describing

relation
○ex. Person owns Car

CarPerson

0..1 *

owns

Operations

●describes class behavior (methods)
●UML syntax:
visibility name (params):
return-type {flags}

●example:
+ hasCar(car: Car): boolean

●in conceptual models do not use
operations for interface definitions - use
several words for responsibility
description instead

Operation Notation Explained

●visibility - public (+), private (-),
protected (#)

●name - mandatory
●params - operation parameters
●return-value - type of return value
●flags - other features of operation

Operation Parameters

●similar to attributes
●syntax:
direction name: type =
default_value

●name, type, default_value -
same as attributes

●direction - defines, if parameter is input
- in (default), output - out or inout

Direction Semantics I.

●in (input) parameter is:
○used as input parameter
○used during operation
○not changed during operation
○default

●out (output) parameter is:
○used as output parameter - as

resulting value of operation
○can be changed during operation

Direction Semantics II.

●inout parameter is:
○used as input and output parameter
○used during operation
○used as output parameter - as

resulting value of operation
○can be changed during operation

Generalization

●describes inheritance, IS-A
relationship

●arrow orientation is from child class to
parent class

Notes and Comments

●notes are comments
●connection with element is through

dashed line
●possible to use in any UML diagram

Dependency

●exists between two elements, when
change in one element (source,
provider) leads to change in second
element (destination, client)

●dependency examples: class sends
message to other class, class contains
other class as data or parameter in
operation/method

●risk - domino effect, cyclic dependency
●goal - keep dependencies at minimum
●basic dependency is not transitive

Dependency Example

Dependency Stereotypes
●«call» - source calls operation on

destination
●«create» - source creates instances of

destination
●«instantiate» - source is instance of

destination
●«permit» - destination permits to source

own private methods/attributes
●«substitute» - source can replace

destination (inheritance)
●«use» - source requires for own

implementation destination

Constraints

●most of stuff in designing class
diagrams express constraints

●associations, attributes, generalizations
helps to refine constraints

●anything can be used to express
constraints
○constraints must be located in {}
○programming language, Object

Constraint Language (OCL)
●{title: can't be uppercase}

When to use Class Diagrams

●don't try to use all possible notations
●conceptual class diagrams are very

useful in process of analysis
●don't create models for everything -

focus on key points

Questions?

References

●Class Diagram (Wikipedia)
●UML 2 Class Diagrams
●UML basics: The class diagram

http://en.wikipedia.org/wiki/Class_diagram
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

