CDE

CDE Services

Consulting
Development
Education

Class Diagrams

Basics

Miroslav Binas

(c) 2010 - 2017

Y
Strusture Behavior
Diagram Diagram
i)
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Compostto Deployment Package Interaction State Machine
Diagram Dingram Diagram Diagram Diagram Diagram
™ Sequencs Gommunication ‘g‘f;ﬁg‘;: Timing
Notation: UML i

CDE

« - Introduction

e one of the common UML diagrams

e class diagram - describes types of the
objects in the system and relationships
between them

e contains
ofeatures - properties (attributes) and

methods

orestrictions in usage

I www.cde.sk

CDE

" Class Diagram Structure

Class Name

attributes

methods

i

CDE

~ Class Diagram Example

Person

-name: string
-surname: string

+getName(): string

+getSurname(): string
+setName(string: name): void
+setSurname(surname: string): void

=

CDE Sketch of
Conceptual Class Diagram

CDr Initial

Conceptual Class Diagram

Enraliment

Student 1 enrolled 1. liarks Received L] 4 Seminar
Name Get Average To Date Name
Addrass Get Final Mark Seminar Number
Phone Number Fees
Email Address o, Afordered, FIFO} on waiting list 0.
Student Number Add Student
Average Mark 0.*| Drop Student

Is Eligible To Enroll

Get Seminars Taken Professor
Name. instructs
Address 0.1
Phone Number

Email Address
Salary
7Some seminars may
not have an
instructor?
H- www.cde.sk

CDE

=7 Properties

e structural features of class
oclass entries
e two notations:
o attributes
oassociations
e in diagram each notation looks
different, but meaning is the same

CDE pttributes

e notation using attributes describes
properties with line of text inside of the
class box

e attribute syntax:
visibility name: type
multiplicity = default-value
{flags}

e Example:

- name: String [1] =
name" {readOnly}

Al

no

CDE Attribute Notation Explained

evisibility - public (+), private (-),
protected (#)

e name - mandatory

e type - type of attribute value/object

emultiplicity

edefault-value - value for newly
created object

e flags - other features of attribute

b

CDE

~ Associations

e solid oriented line (with arrow) between
two classes oriented from source class
to destination class

e destination class specifies type of
property

e at the destination class is written:

o property name
o multiplicity

CDE

" Associations Example

Order
-dateReceived : Date [0..1]
-isPrepaid : boolean [1]
-orderEntries : OrderLine [*] {ordered}

~dateReceived 1

0.1 -isPrepaid

-orderLines

OrderLine

CPE Tips for Usage of Properties

e Q: when to use attributes and when
associations?

e attributes - mainly for value types or
built in reference types

e associations - mainly for special
classes (Customer and Order)

e what to use and what to hide
(attributes) is based on what would you
like to highlight

€L \utiplicity

e multiplicity of property defines, how
many objects can be stored in property

e common values:
o1 - exactly one instance, default
00..1 -no instance or one instance
o * - zero or more instance

e multiplicity defines range of instances -
lower limit..upper limit

5‘ www.cde.sk

CDE ;s of Multiplicity

e optional - lower limit starts at 0

e mandatory - lower limit start min. at 1

e single-valued - upper limitis 1

e multivalued - upper limit is greater
than 1 (usually *)

CBL \uttiplicity Flags

e {ordered} - set of entries in order
e {nonunique} - not unique
e {unordered} - default, not ordered
e {unique} - default, unique

b

CDE

" Properties Implementation

public class Order {
private Date dateReceived;
private boolean isPrepayed;
private List<OrderLine>
orderEntries;

CDE

" Bidirectional Associations

Person Car

-owner -cars
0.1 -

e possible to use without arrows
o useful in conceptual models
e bidirectional association is pair of properties
inversely connected
o Car has property
owner:Person [0..1]
o Person has property
cars:Car [*]

CDE

Named Associations

Person Car

P owns

e possible to use instead of properties
e relation is marked with verb
o arrow shows orientation
oit can be used in sentence describing
relation
oeX. Person owns Car

b

CDEE

Operations

e describes class behavior (methods)

e UML syntax:
visibility name (params) :
return-type {flags}

e example:
+ hasCar (car: Car): boolean

e in conceptual models do not use
operations for interface definitions - use
several words for responsibility

g description instead

CDE

-~ Operation Notation Explained

evisibility - public (+), private (-),
protected (#)

e name - mandatory

e params - operation parameters

e return-value - type of return value

e f1ags - other features of operation

CDE=

=~ Operation Parameters

e similar to attributes

e syntax:
direction name: type =
default value

ename, type, default value -
same as attributes

e direction - defines, if parameter is input
- in (default), output - out or inout

CDEE

Direction Semantics |.

e in (input) parameter is:
oused as input parameter
oused during operation
o not changed during operation
odefault
e out (output) parameter is:
oused as output parameter - as
resulting value of operation
o can be changed during operation

CDE

Direction Semantics Il.

e inout parameter is:
oused as input and output parameter
oused during operation
oused as output parameter - as
resulting value of operation
o can be changed during operation

CDE=

Generalization

Vehicle

7

Plane

e describes inheritance, IS-A
relationship
e arrow orientation is from child class to
% parent class

ww.cde.sk

CDEE

Notes and Comments

Vehicle

Contains general _-"
information about all e
vehicles in game (also

planes)

e notes are comments
e connection with element is through
dashed line
% e possible to use in any UML diagram

ww.cde.sk

CDE

=~ Dependency

e exists between two elements, when
change in one element (source,
provider) leads to change in second
element (destination, client)

e dependency examples: class sends
message to other class, class contains
other class as data or parameter in
operation/method

e risk - domino effect, cyclic dependency

. e goal - keep dependencies at minimum
% e basic dependency is not transitive

w.cde.sk

CDE

- Dependency Example

BenefitsViewer

AVA
BenefitsDatalnterconnection EmployeeDatalnterconnection

b

CDE

= Dependency Stereotypes

e «callx» - source calls operation on

destination

® «createx» - source creates instances of
destination

e «instantiate» - source is instance of
destination

e «permit» - destination permits to source
own private methods/attributes

e «substitute» - source can replace
destination (inheritance)

® «usex» - source requires for own

% implementation destination

CDE

el Constraints

e most of stuff in designing class
diagrams express constraints

e associations, attributes, generalizations
helps to refine constraints

e anything can be used to express
constraints
o constraints must be located in {}
o programming language, Object

Constraint Language (OCL)
% e {title: can't be uppercase}

CDE

" When to use Class Diagrams

e don't try to use all possible notations

e conceptual class diagrams are very
useful in process of analysis

e don't create models for everything -
focus on key points

CDEE

Questions?

CDE

" References

e Class Diagram (Wikipedia)
e UML 2 Class Diagrams
e UML basics: The class diagram

http://en.wikipedia.org/wiki/Class_diagram
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

